
Fractal Lévy correlation cascades

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 F307

(http://iopscience.iop.org/1751-8121/40/16/F03)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 03/06/2010 at 05:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/16
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) F307–F314 doi:10.1088/1751-8113/40/16/F03

FAST TRACK COMMUNICATION
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Abstract
The correlation structure of a wide class of random processes, driven by
stable non-Gaussian Lévy noise sources, is explored. Since these noises
are of infinite variance, correlations cannot be measured via auto-covariance
functions. Exploiting the underlying Poissonian structure of Lévy noises,
we present a cascade of ‘Poissonian correlation functions’ which characterize
the correlation structure and the process distribution of the processes under
consideration. The theory developed is applied to various examples including
motions, Ornstein–Uhlenbeck and moving-average processes, and fractional
motions and noises—all driven by stable non-Gaussian Lévy noises.

PACS numbers: 05.40.Fb, 05.40.Ca, 02.50.−r

1. Introduction

A wide range of random processes can be represented as an integral transform of a ‘driving’
random noise. Specifically,

X(t) =
∫ ∞

−∞
K(t; s)N(ds) (1)

where (i) X = (X(t))t is the random process under consideration; (ii) N = (N(t))t is the
driving random noise and (iii) K(t; s) is a non-negative-valued integration kernel, governing
the integral transform.

Equation (1) can be interpreted as a system transforming an input noise into an output
process. A key feature of this transformation is that it induces correlation: the integration
with respect to the kernel K(t; s) convolutes uncorrelated input noises into correlated output
processes.

Examples of processes driven by white noise and admitting the integral representation
of equation (1) include: Brownian motion [1]; Ornstein–Uhlenbeck motions [2] and their
moving-average generalizations [3] and fractional Brownian motions and noises [4].
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For long years white noise served as the dominant model-of-choice for randomness in
stochastic systems. This choice was based on solid grounds: the central limit theorem (CLT)
[5]. The CLT asserts that white noise is the only possible scaling limit of uncorrelated noises
with finite variance. The CLT explains the widespread appearance of white noise and of its
universal hallmark—the Gaussian distribution. However, the CLT fails to hold when variances
are infinite. In such cases, the CLT is replaced by the generalized CLT—due to Gnedenko,
Kolmogorov and Lévy—asserting that the only possible scaling limits are stable Lévy noises
[6, 7].

The class of Lévy noises is characterized by the property of ‘independent and stationary
increments’ [8–10]. The independence-of-increments is the manifestation of ‘pure noise’:
gathering information about one noise increment discloses absolutely no information about
other noise increments. The stationarity-of-increments is, in fact, a statistical shift invariance.
Stable Lévy noises share the additional property of statistical scale invariance (‘self-similarity’,
‘fractality’). White noise is the only stable Lévy noise possessing finite variances.

In recent years Lévy noises have drawn much attention and research. Numerous examples
of Lévy-type statistics have been empirically observed in various areas including anomalous
diffusion [11, 12], heartbeats [13], firing of neural networks [14], seismic activity [15], signal
processing [16] and financial time series [17, 18]. The ruling paradigm of Gaussian noise
modelling in stochastic systems began to give way to the examination and incorporation of
models driven and perturbed by Lévy noise sources [19–24].

If we take the input N to be a symmetric stable Lévy noise—the natural generalization
of white noise—then the Fourier transforms of the multidimensional marginal distributions of
the output process X are given by [8]〈

exp


i


 n∑

j=1

ωjX(tj )







〉
= exp


−a

∫ ∞

−∞

∣∣∣∣∣∣
n∑

j=1

ωjK(tj ; s)

∣∣∣∣∣∣
α

ds


 , (2)

where (i) {tj }nj=1 are arbitrary time points and {ωj }nj=1 are the corresponding Fourier variables
and (ii) the parameters α and a (0 < α � 2 ; a > 0) are, respectively, the Lévy exponent and
the amplitude of the input noise.

The case of white noise with standard deviation σ (σ > 0) corresponds to the Lévy
exponent α = 2 and to the amplitude a = σ 2/2. In this case, the output X is a Gaussian
process, and equation (2) reduces to〈

exp


i


 n∑

j=1

ωjX(tj )







〉
= exp


−1

2

n∑
j1,j2=1

C(tj1 , tj2)ωj1ωj2


 , (3)

where C(t ′, t ′′) = σ 2
∫ ∞
−∞ K(t ′; s)K(t ′′; s) ds is the output’s auto-covariance function.

Equation (3) implies that the output’s process distribution is characterized by its auto-
covariance function—a special feature unique to Gaussian processes.

The non-Gaussian case—corresponding to Lévy exponents in the range 0 < α < 2—
is dramatically different than the Gaussian case. In the non-Gaussian case variances are
infinite, and hence the output processes posses no auto-covariance functions. Moreover,
the multidimensional Fourier transforms of equation (2) are of little practical use. Thus, the
correlation structure of non-Gaussian outputs is far less tractable and amenable to mathematical
analysis than that of Gaussian outputs.

Two measures of correlation, devised to tackle the non-Gaussian case, are the covariation
and the codifference [8]. The former is defined in the parameter sub-range 1 < α � 2,
whereas the latter is defined in the entire parameter range 0 < α � 2. Both measures are
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based on the spectral structure of stable Lévy noises and reduce to the ‘standard’ covariance
at the Gaussian endpoint α = 2. However, these measures of correlation fail to characterize
the output’s process distribution: two different output processes may possess either the same
covariation or the same codifference.

In what follows we present a correlation analysis of the output processes—applicable
to the non-Gaussian case—which is based on the underlying Poissonian structure, rather
than on the spectral structure, of the inputs and outputs. This Poisson-based analysis gives
rise to the fractal Lévy correlation cascade—an infinite cascade of ‘Poissonian correlation
functions’ which characterize the output’s process distribution. This cascade turns out to be
the ‘Lévy counterpart’ of the auto-covariance function—in the passage from white noise input
to symmetric stable Lévy noise inputs.

The theory of Lévy correlation cascades, in the context of general (not necessarily stable)
Lévy noises, is developed in [25]. An analogous theory for general shot noise processes is
presented in [26]. Readers interested in the chaotic properties (ergodicity, mixing) of the
processes under consideration are referred to [27, 28].

2. Poissonian analysis

Our analysis is based on a deep connection between the theory of Lévy distributions and
processes, and the theory of Poisson point processes [29]—known, in the literature, as the
celebrated Lévy–Khinchin and Lévy–Ito theorems [8–10]. Applied to the output process X
this connection can be, somewhat informally, described as follows:

‘Behind’ every output random variable X(t) there exists an inhomogeneous Poisson
process X (t), defined on the real line, which X(t) is its aggregate:

X(t) =
∑

x∈X (t)

x. (4)

The inhomogeneous Poisson process X (t) is an infinite countable collection of real-valued
points, and the aggregate X(t) is convergent if and only if the integral∫ ∞

−∞
K(t; s)α ds (5)

is finite.
The collection X = (X (t))t , of inhomogeneous Poisson processes, is the underlying

Poissonian structure of the output process X. The underlying Poissonian structure X is unique,
and its rigorous construction and description is detailed in [25].

Given a resolution level l (l > 0), let �l(t) denote the number of points of the Poisson
process X (t) which are greater, in absolute value, than the resolution level l. Namely,

�l(t) = #{x ∈ X (t)||x| > l}. (6)

The random process �l = (�l(t))t is the lth level process of the underlying Poissonian
structure X .

Having defined the level processes, we are now in position to state the following key
result, whose proof is given in [25]:

Theorem 1. The probability generating functions of the multidimensional marginal
distributions of the level process �l are given by〈

z
�l(t1)
1 · · ·z�l(tn)

n

〉 = exp{�(l) · Pn(t1, . . . , tn; z1, . . . , zn)} (7)
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where (i) {tj }nj=1 are arbitrary time points and {zj }nj=1 are the corresponding generating-
function variables; (ii) �(l) = al−α—the parameters α and a being, respectively, the input’s
Lévy exponent and amplitude and (iii)

Pn(t1, . . . , tn; z1, . . . , zn) =
n∑

k=1

∑
1�j1<···<jk�n

Rk(tj1 , . . . , tjk
) · (zj1 − 1) · · · (zjk

− 1) (8)

is a polynomial in the variables {zj }nj=1 whose coefficients are given by

Rk(tj1 , . . . , tjk
) =

∫ ∞

−∞
min{K(tj1; s), . . . , K(tjk

; s)}α ds. (9)

We henceforth refer to the sequence of coefficients R = {R1, R2, . . .} as the Fractal Lévy
correlation cascade of the output process X. The cascade R is well defined if and only if the
integrals appearing in equation (5) are finite for all t . The cascade R is contingent on Lévy
exponent α of the input noise and on the system’s integration kernel K(t; s).

Equation (7) is the ‘Lévy counterpart’ of equation (3). The process distribution of the
level processes {�l}l>0 is characterized by the function �(l) and by the cascade R.

The exponent on the right-hand side of equation (7) admits an amplitudal-temporal
factorization—decomposing it into the product of two terms: (i) the function �(l) which
depends on the resolution level l and is independent of the integration kernel K(t; s) and (ii) the
polynomial Pn(t1, . . . , tn; z1, . . . , zn) which depends on the first n members {R1, R2, . . . , Rn}
of the cascade R and is independent of the resolution level l. The factor �(l) captures the
output’s amplitudal structure, whereas the polynomial Pn(t1, . . . , tn; z1, . . . , zn) captures the
output’s temporal structure.

The mean function and the auto-covariance function of the level process �l are given,
respectively, by µl(t) = �(l) · R1(t) and by Cl(t

′, t ′′) = �(l) · R2(t
′, t ′′). Hence, the

auto-correlation function of the level process �l is given by

r(t ′, t ′′) = R2(t
′, t ′′)√

R1(t ′)
√

R1(t ′′)
. (10)

The auto-correlation function turns out to be resolution free—being independent of the
resolution level l.

Since the functions R1 and R2 characterize (up to the multiplicative factor �(l)) the
mean and the auto-covariance functions of the level processes, and since the first n members
{R1, R2, . . . , Rn} of the cascade R characterize (up to the multiplicative factor �(l)) the
n-dimensional marginal distributions of the level processes, we conclude that the function Rn

can be considered as an ‘n-point correlation function’ of the underlying Poissonian structure.

3. Examples

The examples presented below illustrate the theory described above (the detailed calculations
are given in [25]). In this section, we make use of the following shorthand notation:
(i) I{S} := the indicator function of the set S; (ii) (θ)+ := max{0, θ} (θ real) and
(iii) t min := min{t1, . . . , tn} and t max := max{t1, . . . , tn}.

3.1. Stable motions

Stable motions constitute one of the most elemental classes of stochastic processes. They
are self-similar processes [4] with stationary and independent increments [8–10]. In the CLT
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setting with infinite variance stable motions arise as the only possible stochastic-process limits
[30]. Stable motions serve as the fundamental model of anomalous diffusion in a broad array
of physical systems [11, 12].

Stable motions are the integrals of stable Lévy noises in very same way that Brownian
motion is the integral of white noise. In the setting of equation (1) stable motions are the
outputs of the integration kernel K(t; s) = I{0 � s � t}, where time t assumes non-negative
values (t � 0). In this case,

Rn(t1, . . . , tn) = tmin

and

r(t, t + τ) =
√

1

1 + τ/t
.

The cascadeR turns out to be independent of the Lévy exponent α, and the auto-correlation
r turns out to be identical to the ‘standard’ auto-correlation of Brownian motion. The latter
fact is rather surprising since there is no a priori reason why the auto-correlation of a Brownian
output (resulting from a white noise input) be identical to the auto-correlation of the underlying
Poissonian structure of stable outputs (resulting from stable Lévy noise inputs).

3.2. Stable Ornstein–Uhlenbeck motions

Stable Ornstein–Uhlenbeck (OU) motions are stationary Markov processes whose dynamics
are governed by the Langevin linear stochastic differential equation Ẋ = −κX + Ṅ driven by
a stable Lévy noise N (with κ being a positive Hookian parameter) [20–22]. The Langevin
equation—a ‘cornerstone’ stochastic-dynamics equation in Physics—describes the dynamics
of a particle trapped in a harmonic potential well and perturbed by an external noise [2].

In the setting of equation (1) stable OU motions are the outputs of the integration kernel
K(t; s) = I{s � t} · exp{s − t}, where time t assumes real values (−∞ < t < ∞). In this
case,

Rn(t1, . . . , tn) = exp{−ακ(tmax − tmin)}
and

r(t, t + τ) = exp{−ακτ }.
The auto-correlation r of stable OU motions turns out to be identical to the ‘standard’

auto-correlation of Brownian OU motions. As in the case of stable motions this fact is rather
surprising—since there is no a priori reason why the auto-correlation of Brownian OU outputs
(resulting from a white noise input) be identical to the auto-correlation of the underlying
Poissonian structure of stable OU outputs (resulting from stable Lévy noise inputs).

3.3. Stable moving-average motions

Stable moving-average (MA) motions are the generalizations of stable OU motions. They
arise in the context of signal processing [16, 31] as outputs of a convolution filter,
with impulse-response function f (τ) (τ � 0),3 ‘fed’ by the input stable Lévy noise:
X(t) = ∫ t

−∞ f (t − s)N(ds). The resulting stable MA motions are stationary non-Markov
stochastic processes.

In physics, stable MA motions facilitate the construction of shot noise processes exhibiting
the Noah effect and the Joseph effect [32], see [26, 33, 34].

3 The impulse-response function is non-negative valued and is monotonically decreasing to zero.
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In the setting of equation (1) stable MA motions are the outputs of the integration kernel
K(t; s) = I{s � t} · f (t − s), where time t assumes real values (−∞ < t < ∞). In this case,

Rn(t1, . . . , tn) = F(tmax − tmin)

and

r(t, t + τ) = F(τ)

F (0)
,

where F(τ) := ∫ ∞
τ

f (u)α du (τ � 0).
It is possible to ‘reverse engineer’ the auto-correlation r of stable MA motions: if

we wish that r(t, t + τ) = ρ(τ), where ρ(τ) (τ � 0) is a smooth function decreasing
monotonically from unity to zero, then the impulse-response function should be taken to be
f (τ) = (−ρ ′(τ ))1/α . We give three ‘reverse-engineering’ examples:

(i) Exponential correlations of the form r(t, t + τ) = exp{−bτ } are obtained by taking
exponential impulse-response functions of the form f (τ) = exp

{− b
α
τ
}

(b > 0).
(ii) Stretched-exponential correlations of the form r(t, t + τ) = exp{−bτβ} are obtained by

taking impulse-response functions of the form f (τ) = exp
{− b

α
τ β

}
τ (β−1)/α (b > 0;

0 < β < 1).
(iii) Power-law correlations of the form r(t, t + τ) = (1 + bτ)−β are obtained by taking

power-law impulse-response functions of the form f (τ) = (1 + bτ)−(β+1)/α (b, β > 0).

3.4. Fractional stable motions and noises

The celebrated fractional Brownian motions, first introduced by Mandelbrot and Van Ness
[35], are self-similar Gaussian processes with stationary and dependent increments [4]. In
the CLT setting with finite variance and long-range dependence [36–38], fractional Brownian
motions arise as the only possible stochastic-process limits [30].

Fractional stable motions are the ‘Lévy counterparts’ of fractional Brownian motions. They
are self-similar stable processes with stationary and dependent increments [4]. In the CLT
setting with infinite variance and long-range dependence, fractional stable motions arise as
the only possible stochastic-process limits [30].

In the setting of equation (1) fractional stable motions are the outputs of the integration
kernel K(t; s) = (t − s)

H−1/α
+ − (0 − s)

H−1/α
+ , where time t assumes non-negative values

(t � 0). The Lévy exponent α is restricted to the range 1 < α < 2, and the Hurst parameter
H—governing the motions’ long-range dependence—takes values in the range 1/α < H < 1.
In this case,

Rn(t1, . . . , tn) = c · (tmin)
αH ,

where c is a constant depending on the parameters α and H, and

r(t, t + τ) =
(

1

1 + τ/t

) αH
2

.

The limit H → 1/α yields the cascade R (and, consequently, the auto-correlation r)
corresponding to stable motions.

Fractional stable noises are the unit-increment sequences of fractional stable motions in very
same way that fractional Gaussian noises unit-increment sequences of fractional Brownian
motions [4]. In the setting of equation (1) fractional stable noises are the outputs of the
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integration kernel K(t; s) = (t − s)
H−1/α
+ − (t − 1 − s)

H−1/α
+ , where time t assumes integer

values (t = 0,±1,±2, . . .). In this case,

Rn(t1, . . . , tn) ∼ c1

(tmax − tmin)α(1−H)

(as (tmax − tmin) → ∞) and

r(t, t + τ) ∼ c2

τα(1−H)

(as τ → ∞), where c1 and c2 are constants depending on the parameters α and H.

4. Conclusions

The theory presented considered the integral transform of equation (1) which models a
wide range of physical systems convoluting uncorrelated input noises into correlated output
processes. There is a profound and marked difference between systems driven by white noise
and systems driven by other symmetric stable Lévy noises.

In the former case, the output is Gaussian and its process distribution is characterized
by a single function—the output’s auto-covariance function. In the latter case, variances are
infinite and, consequently, the output’s auto-covariance function is undefined.

Nonetheless, in the non-Gaussian case the output process admits an underlying Poissonian
structure which gives rise to an infinite cascade R of ‘Poissonian correlation functions’.
The cascade R characterizes the output’s underlying Poissonian structure and is the ‘Lévy
counterpart’ of the auto-covariance function in the Gaussian case.

The output’s correlation structure in the non-Gaussian case is far more rich and complex
than in the Gaussian case: captured by a single function in the Gaussian case and by an
infinite cascade of functions in the non-Gaussian case. We coin R the output’s fractal Lévy
correlation cascade.
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